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Correlated initial conditions in directed percolation
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We investigate the influence of correlated initial conditions on the temporal evolution of a
(d11)-dimensional critical directed percolation process. Generating initial states with correlations^sisi 1r&
;r s2d, we observe that the density of active sites in Monte Carlo simulations evolves asr(t);tk. The
exponentk depends continuously ons, and varies in the range2b/n i<k<h. Our numerical results are
confirmed by an exact field-theoretical renormalization group calculation.@S1063-651X~98!09107-7#

PACS number~s!: 05.70.Ln, 64.60.Ak, 64.60.Ht
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I. INTRODUCTION

It is well known that initial conditions influence the tem
poral evolution of nonequilibrium systems. The system
‘‘memory’’ for the initial state usually depends on the d
namical rules. For example, stochastic processes with a fi
temporal correlation length relax to their stationary state
an exponentially short time. An interesting situation emer
when a system undergoes a nonequilibrium phase trans
where the temporal correlation length diverges. This rai
the question of whether it is possible to construct init
states that affect theentire temporal evolution of such sys
tems.

To address this question, we consider the example of
rected percolation~DP!, which is the canonical universalit
class for nonequilibrium phase transitions from an act
phase into an absorbing state@1#. DP is used as a mode
describing the spreading of some nonconserved agent,
may be interpreted as a time-dependent stochastic proce
which particles produce offspring and self-annihilate. D
pending on the rates for offspring production and se
annihilation, such models display a continuous phase tra
tion from a fluctuating active phase into an absorbing s
without particles from where the system cannot esca
Close to the phase transition, the emerging critical beha
is characterized by a particle distribution with fractal pro
erties and long-range correlations. The DP phase transitio
extremely robust with respect to the microscopic details
the dynamical rules@2,3#, and takes place even in 111 di-
mensions.

Monte Carlo ~MC! simulations of critical models with
absorbing states usually employ two different types of ini
conditions. On the one handrandom initial conditions~Pois-
son distributions! are used to study the relaxation of an initi
state with a finite particle density toward the absorbing st
In this case, the particle densityr(t) decreaseson the infi-
nite lattice asymptotically as~for the definition of the DP
scaling exponentsb,n' ,n i ,z, see Ref.@1#!

r~ t !;t2b/n i. ~1!

On the other hand, in so-called dynamic MC simulations@4#,
each run starts with asingle particleas a localized active
seed from which a cluster originates. Although many
PRE 581063-651X/98/58~1!/311~7!/$15.00
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these clusters survive for only a short time, the number
particles n(t) averaged over many independent runsin-
creasesas

^n~ t !&;t1h, ~2!

whereh5(n'22b)/n i . These two cases seem to repres
extremal situations where the average particle number ei
decreases or increases.

A crossoverbetween these two extremal cases takes pl
in a critical DP process that starts from a random init
condition at very low density. Here the particles are initia
separated by empty intervals of a certain typical size; the
fore, the average particle number first increases accordin
Eq. ~2!. Later, when the growing clusters begin to intera
with each other, the system crosses over to the algeb
decay of Eq.~1!—a phenomenon which is referred to as t
‘‘critical initial slip’’ of nonequilibrium systems@5#.

In the present work we investigate whether it is possi
to interpolatecontinuouslybetween the two extremal case
As will be shown, one can in fact generate certain init
states in a way that the particle density on the infinite latt
varies as

r~ t !;tk, ~3!

with a continuously adjustable exponentk in the range

2b/n i<k<1h. ~4!

To this end we construct artificial initial configurations wi
algebraic long-range correlations of the form

C~r !5^sisi 1r&;r 2~d2s!, ~5!

where ^ & denotes the average over many independent r
izations,d the spatial dimension, andsi50 and 1 inactive
and active sites. The exponents is a free parameter, and ca
be varied continuously between 0 and 1. The limit of lon
range correlationss→d corresponds to a constant partic
density, and thus we expect Eq.~1! to hold. On the other
hand, the short-range limits→0 represents an initial stat
where active sites are separated by infinitely large interv
so that the particle density should increase according to
~2!. In between, we expectr(t) to vary algebraically accord
311 © 1998 The American Physical Society
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312 PRE 58HAYE HINRICHSEN AND GÉZA ÓDOR
ing to Eq. ~3!, with an exponentk depending continuously
on s. Our aim is to investigate the functional dependence
k~s!.

The effect of power-law-correlated initial condition
^f(0)f(r )&;r 2(d2s) in the case of a quench to the order
phase of systems with a nonconserved order parameter
investigated some time ago in Ref.@6#. Such systems are
characterized by coarsening domains that grow with time
t1/2. An important example is the (211)-dimensional
Glauber-Ising model quenched to zero temperature. It
observed that long-range correlations are relevant onlys
exceeds a critical valuesc . Furthermore, it was shown tha
the relevant regime is characterized by a continuously cha
ing exponent in the autocorrelation functionA(t)
5@f(r ,t)f(r ,0)#;t2(d2s)/4, whereas the usual short-rang
scaling exponents could be recovered below the thresh
The results were found to be in agreement with the simu
tion results for the two-dimensional Ising model quench
from T5Tc to T50.

The DP process—the prototype for models with a ph
transition from an active phase into an absorbing state
different from the coarsening processes. Instead of grow
domains, the DP process generates fractal clusters of a
sites with a coherence lengthj' which grows ast1/z, where
z5n i /n' . Thus the scaling forms assumed in Ref.@6# are no
longer valid in the present case. In addition, the fie
theoretical description of DP involves nontrivial loop corre
tions, and thus we are interested in finding out to what ex
the results are different from those in Ref.@6#. Our investi-
gation also sheds some light on the relation between
observed phenomena for correlated initial states, the crit
initial slip, and scaling laws in time-dependent simulation

In the present work we focus on the following aspects
the problem: In Sec. II, we describe in detail how correla
initial states can be constructed in one dimension. Us
these states we then perform MC simulations in order
estimate numerically the exponentk as a function ofs ~see
Sec. III and Fig. 4!. In Sec. IV, we present a field-theoretic
renormalization group calculation which generalizes rec
results obtained in Ref.@7#. Because of a special property o
the vertex diagrams and the loop diagrams for the ini
particle distribution, it is possible to derive an exact scal
relation, leading to our main result

k~s!5H h for s,sc

1

z
~d2s2b/n'! for s.sc,

~6!

with the critical thresholdsc5b/n' . Because of the scaling
relation h5(n'22b)/n i , this function is continuous ats
5sc . The theoretical result is found to be in agreement w
our simulation results in one spatial dimension. In Sec. V,
compare the correlations of our constructed initial states w
the ‘‘natural’’ correlations that are generated by the DP p
cess itself. Finally we summarize our conclusions in Sec.

II. CONSTRUCTION OF CORRELATED INITIAL STATES

The construction of artificial correlated particle distrib
tions on a lattice is a highly nontrivial task, since the latti
spacing and finite size effects lead to deviations that stron
f
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affect the accuracy of the numerical simulations. Therefo
one has carefully to verify the correlation exponent and fr
tal dimension of the generated distribution. In this secti
we describe in detail how such particle distributions can
generated and tested. For simplicity we restrict ourselve
initial states in one spatial dimension.

Let us consider a particle distribution on the real li
where particles are separated by empty intervals of lengthl .
We assume that these intervals are uncorrelated and p
law distributed according to

P~ l !;l 2a, 1,a<2. ~7!

This distribution corresponds to a simple fractal set with
fractal dimensiondf5a21; hence the range ofa is re-
stricted by 1,a<2. On a lattice, however, the lattice spa
ing and the system sizeL have to be taken into account a
lower and upper cutoffs for the distributionP(l ). The qual-
ity of a lattice approximation depends on the actual imp
mentation of these cutoffs. It turns out that the accuracy
MC simulations depends strongly on the quality of the init
states, and therefore the proper implementation of the cut
is crucial in the present problem.

We find that a good approximation is obtained when
~almost! perfect fractal set is projected onto the lattice in
way that sitei becomes active if at least one element of t
fractal belongs to the interval@ i ,i 11#. The resulting lattice
configuration is the minimal set of boxes on the lattice tha
needed to cover the fractal set. This projection can be e
ciently realized on a computer by generating a sequenc
points x on the real line separated by intervals distribut
according to Eq.~7! with a very small cutoffLmin!1, and
projecting it onto the lattice by the following prescriptio
~see Fig. 1!.

~1! Start with the empty latticesi50 (i 51,...,L), and let
x be a real variable with the initial valuex51.

~2! Let i be the maximal integer for whichi<x, and turn
site i into the active state by settingsi51.

~3! Let Lmax5L2x be the current upper cutoff and gen
erate a random number 0,y,1 from a flat distribution. If
y,(Lmax/Lmin)

12a, the construction of the initial state i
finished; otherwise, continue.

~4! Generate another random numberz from a flat distri-
bution in the intervalLmax

12a,z,Lmin
12a , and incrementx by

l 5z1/(12a), and continue at step~2!.
Notice that step~3! takes the upper cutoff into account b

finishing the loop when the generated intervall would ex-
ceed the remaining size of the chainL2x. The lower cutoff
is processed in step~4! by truncating the allowed range ofz.

In order to verify the quality of this approximation, w
numerically estimate the fractal dimensiondf of the gener-
ated initial states by box counting. To this end we divide t
whole system inton boxes, and count the numberm of boxes

FIG. 1. Schematic illustration of the projection from~a! an al-
most perfect fractal set onto~b! the lattice sitess1 ,...,s8 .



0
l

PRE 58 313CORRELATED INITIAL CONDITIONS IN DIRECTED . . .
FIG. 2. Numerical verification of the fractal dimensiondf and the correlation exponents on a lattice with 211 sites averaged over 20 00
samples.~a! Number of active boxesm vs the total number of boxesn for various values ofa. ~b! Estimate of the corresponding fracta
dimensiondf . ~c! and ~d! Analogous estimation of the correlation exponents as a function ofa.
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that contain at least one active site, averaging over m
independent realizations. In Fig. 2~a!, m is plotted againstn
on a double-logarithmic scale. The straight lines indicate t
the ‘‘true’’ fractal is well approximated. From the slopes, w
estimate the fractal dimensiondf which is shown in Fig. 2~b!
as a function ofa. We also measure the two-point correl
tions in the generated states which should be precisely th
of Eq. ~5! with s5a21. This can be proven by assumin
that the intervals are uncorrelated, and evaluating a geo
ric series of the Laplace transform ofP(l ). In order to
verify this relation, we estimateds~a! numerically in Figs.
2~c! and 2~d!.

In both measurements, we find a fairly good agreem
with the exact results~dashed lines in Fig. 2!. It turns out the
deviations close toa51 can be reduced by increasing th
system size, while the deviations close toa52 are due to the
lattice spacing and the lower cutoffLmin .

It should be emphasized that these artificial initial sta
have a vanishing particle density in the limitL→`. On a
finite lattice, however, a finite density is generated wh
depends ona, and may vary over several decades. By
creasing the lattice size, we therefore reduce the initial p
ticle density which leads to a higher statistical error in t
subsequent DP process. Thus the optimal system size h
be determined by balancing discretization errors of the ini
states against statistical errors of the DP process.

III. NUMERICAL RESULTS

The time-dependent simulations have been performed
using a Domany-Kinzel stochastic cellular automaton@8#
with parallel updates and periodic boundary conditions. T
Domany-Kinzel model is controlled by two parametersp1
and p2 , and has a whole phase transition line where a
transition takes place. We performed simulations for th
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different realizations, namely,p150.8092, p250, the
Wolfram-18 transition;p15p250.705 485; site percolation
and p150.644 700 andp250.873 762, bond percolation
The results turned out to be the same in all cases wi
numerical accuracy, although the bond and site percola
showed a better scaling law behavior. An efficient, multisp
coded program has been employed that simulates 32 rep
for different valuesaP(1,2), exploiting the advantage tha
the same random numbers can be used on each replica
given site. This allows us to update 32 systems in para
stored as an integer vector of lengthL. The lattice size has
been varied betweenL5128 and 10 000, while the numbe
of independent samples was varying between 10 000
500, respectively. Finite size effects turned out to be ne
gible for L>4096. As shown in Fig. 3, the quality of th
power law forr(t) is quite convincing, and extends over th
first three decades in the case of a system withL58192 sites.
For finite systems, all these curves will eventually cross o
to the t2b/n i decay after a very long time. The slopes of t
lines in the log-log plot—measuring the exponentk~a!—
have been extrapolated from the last two decades by stan
linear regression analysis. For eacha we also determine the
corresponding correlation exponents~a!, as explained in
Sec. II ~see Fig. 2!. In Fig. 4, we plotk~a! versuss~a!.
Using the numerically known estimates for the DP expone
@9#,

b50.2765, n i51.7338, n'51.0968,

z51.5807, h50.3137, ~8!

our results are in a fairly good agreement with the theoret
prediction of Eq.~6! ~solid line!. The deviations for smalls
originate from the lattice cutoff, and could be reduced
further increasing the computational effort.
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314 PRE 58HAYE HINRICHSEN AND GÉZA ÓDOR
IV. RENORMALIZATION GROUP CALCULATION

In this section we derive Eq.~6! by an exact renormaliza
tion group ~RG! calculation. To this end the DP Langev
equation@2# has to be extended by an additional term

] tr~x,t !5ar~x,t !2br2~x,t !1D¹2r~x,t !1h~x,t !

1D1f~x!d~ t !, ~9!

where f(x) represents the initial particle distribution an
h(x,t) is a r-dependent noise field with correlations:

^h~x,t !h~x8,t8!&5gr~x,t !d~x2x8!d~ t2t8!. ~10!

Although in principle we could directly analyze the Lang
vin equation, it is often more convenient to derive the cor
sponding effective field theory by introducing a secon
quantized bosonic operator representation@10#. The
Langevin equation it then transformed into an effective
tion S5S01Sint1Sipd , whereS0 , Sint , andSipd denote the
free part, the nonlinear interaction, and the contribution

FIG. 3. Temporal dependence ofr for different initial correla-
tions characterized bya51,...,2 in steps of132 ~from bottom to top!.
The simulation has been performed on a periodic lattice withL
58192 sites, and a lower cutoffLmin50.0001, averaging statisti
cally over 1600 samples.

FIG. 4. Estimates for the exponentsk~s! obtained from the
slopes of the lines in Fig. 3. The theoretical prediction is shown
the solid line. The dashed line indicates the ‘‘natural’’ correlatio
of DP ~see Sec. VI!.
-
-

-

r

the initial particle distribution. Following the notation of Re
@7#, the respective parts are given by

S0@c,c̄#5E ddx dtc̄~x,t !@] t1l~s2¹2!#c~x,t !,

~11!

Sint@c,c̄#5E ddx dtgc~x,t ! c̄~x,t !@c~x,t !2c̄~x,t !#,

~12!

Sipd@c̄,f#5E ddx(
j 51

`

D j c̄
j~x,0!f~x!. ~13!

The partS01Sint is just the usual action of Reggeon fie
theory @11,2#. The additional contributionSipd couples the
field c̄(x,0) with the initial particle distributionf(x). It is
written in its most general form containing contributions
all orders inc̄ with independent coefficientsD j . The lowest
order contributionD1c̄f in Eq. ~13! corresponds to the term
D1f(x)d(t) in the Langevin equation~9!. The higher order
terms for j >2 are included because they may be genera
under RG transformations. However, as we will see below
is actually sufficient to consider the first two contributions

The relaxation of a DP process with random initial co
ditions f(x)5r0 to its stationary state was studied recen
in Ref. @7# using Wilson’s dynamic renormalization grou
approach. At the critical dimensiondc54 the constant con-
tribution D1c̄f was shown to be relevant while the ‘‘Pois
sonian’’ contributionD2c̄2f turned out to be marginal. Fo
d,dc , however, fluctuations corrections cause the coe
cient D2 to vanish under RG transformations. This allow
the authors to express the so-called critical initial slip exp
nenth ~u8 in their notation! by an exact scaling relation. A
mentioned in Sec. I, this exponent describes the initial sh
time behavior ofr(t) until the correlations generated by th
dynamical process are longer than the typical size of em
intervals in the initial state@5# so that the system crosses ov
to the usual decay of Eq.~1!. In the present case, howeve
the interval sizes of the initial state are power law distr
uted, and affect not only the initial but in principle the who
temporal evolution. Nevertheless we can use the formal
of Ref. @7# in order to determine the exponentk as a function
of s. The only difference is that we introduce a fieldf(x)
that carries a nontrivial scaling dimensiondf .

Let us first consider a scaling transformation

x→x85bx, t→t85bzt, ~14!

where z5n' /n i is the anisotropy exponent of DP. Unde
this transformation the fields in Eqs.~11!–~13! change ac-
cording to

f~x!→f8~x8!5b2dff~x!,

c~x,t !→c8~x8,t8!5b2dcc~x,t !, ~15!

c̄~x,t !→c̄8~x8,t8!5b2dc̄c̄~x,t !.

As in Reggeon field theory, the fieldsc andc̄ carry the same
scaling dimensiondc5dc̄ . The scaling dimension of the

y
s
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initial statedf is related to thefractal dimensiondf as fol-
lows. The number of active sitesN on a lattice withL sites
grows asN;Ldf . On the other hand,N;^f&Ld, where^f&
denotes the average density of active sites, i.e.,^f&
;Ldf2d. Under rescaling this relation turns intôf&b2df

5(Lb)df2d, hence

df5d2df5d2s. ~16!

Under rescaling, the contributionSipd changes by

Sipd→Sipd8 5E ddx(
j 51

`

bd2 jdc2dfD j c̄
jf~x!, ~17!

i.e., the coefficientsD j transform according to

D j→D j85bd2 jdc2dfD j . ~18!

Defining the anomalous scaling dimensionshc ,hf of the
fields c,f by

dc5 1
2 ~d1hc!, df5 1

2 ~d1hf! ~19!

the scaling dimensions of the coefficientsD j in the mean
field ~MF! approximation is given by

dD j

MF5 1
2 @d~12 j !2 j hc2hf#. ~20!

This result is expected to hold at the critical dimensiondc
54. Notice that the relevance of the contributionsD j de-
creases with increasingj . In systems with less than fou
spatial dimensions, fluctuation corrections have to be ta
into account. Assuming that contributions withj >3 in Eq.
~13! are irrelevant, these corrections have been compute
Ref. @7# in a one-loop approximation. It was shown that
d542e dimensions the coefficientsD1 andD2 change un-
der infinitesimal scalingb511 l according to

dD1

dl
5D1

2hc2hf

2
1D2

gK4L2

l~L21s!
2D1D2

2g2K4

l2

10~e2!, ~21!

dD2

dl
5D2

2d22hc2hf

2
2D2

2g2K4

l2 2~D2!2
5g2K4

l2

10~e2!, ~22!

whereK4 denotes the surface area of the unit sphere in f
dimensions divided by (2p)4, andL is the ultraviolet cutoff
in momentum space.

Let us first consider the renormalization ofD2 . As al-
ready noticed in Ref.@7#, the diagrams in Eq.~22! which are
linear in D2 are formally identical with those for the reno
malization of the nonlinear vertexg to all orders ine ~see
Fig. 5!. This observation plays a crucial role in the prese
problem: Since the renormalization of the vertexg is given
by

dg

dl
5gFz2

d

2
2

3hc

2
2

2g2K4

l2 1¯ G10~e2! ~23!
n

in

r

t

we may replace the diagrams of the formD2@22g2K4 /l21
0(e2)] in Eq. ~22! by the scaling partD2@z2d/223hc/2# of
Eq. ~23!, resulting in

dD2

dl
5D2S hc2hf

2
2zD1~D2!2F2

5g2K4

l2 10~e!G .
~24!

The linear part of this equation is now exact to all orders
e. Since

hc2hf

2
2z5dc2df2z<dc2z,0 ~25!

we arrive at the conclusion thatD2 scales to zero for arbi-
trary initial states ind,4 spatial dimensions. Thus Eq.~21!
reduces to its scaling part, and hence the scaling dimen
of D1 is given by

dD1
52

hc1hf

2
5d2dc2df5s2dc . ~26!

Depending on the sign ofdD1
, the loop corrections for the

initial particle distribution arerelevantfor s.sc , irrelevant
for s,sc , andmarginal for s5sc .

Continuously changing exponents usually appear w
we modify a model with a marginal parameter which is i
variant under RG transformations. For example, in the c
of models with infinitely many absorbing states, the init
density plays that role@12#. In our case the two-point corre
lation of the fieldc(x,t) is characterized bydc5d2s for
r .r c(t), and is left invariant under the coarse-graining R
transformation, wherer c(t)→` is a growing spatial scale. In
the infinite time limit, this scaling crosses over to

dc~ t→`!5sc5b/n'. ~27!

In the regimes.sc the exponentk is related to the scaling
dimensiondD1

as follows. The particle density is expected
vary in the long time limit as

r~ t !.r0tk, ~28!

wherer0}D1 is the initial particle density. Under rescalin
~15!, the densityr(t) @which is essentially the average o

FIG. 5. One-loop diagrams for the nonlinear vertexg ~left! and
the Poissonian contributionD2 ~right!. The diagrams are formally
equivalent. The same applies to higher loop diagrams that are li
in D2 and the corresponding vertex diagrams~not shown here!.
Hence the loop corrections of these quantities are identical to
orders ine.
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c(x,t)# scales asr(t)→b2dcr(t) while the initial density
transforms according tor0→b2dfr0 . Thus scaling invari-
ance of Eq.~28! requires that2dc5zk2df , i.e.,

k5
df2dc

z
5

hf2hc

2z
. ~29!

In the irrelevant regimes,sc , however, the initial density
r0 scales to zero under RG transformations, which may
interpreted as an initial state with noninteracting active se
leading to an increase according to Eq.~2!. Combining these
results we arrive at Eq.~6!, which is exact to all orders ine.

V. ‘‘NATURAL’’ CORRELATIONS IN A DP PROCESS

It is interesting to compare the artificial initial states
Sec. II with ‘‘natural’’ DP scaling states. Scaling invarian
predicts that a critical DP process, starting from a fully o
cupied lattice, evolves toward a state with correlations,

C~r !5^sisi 1r&;r 2b/n', r !j' , ~30!

i.e., the ‘‘natural’’ correlations of the critical DP are given b
sDP5d2b/n' . Interestingly, the corresponding expone
k(sDP) vanishes. This means that these correlations cha
terize a situation where the critical DP process is alm
stationary. From the field-theoretical point of view this is n
surprising, sincek is determined solely by the scaling dime
sion of the initial particle distribution. Nevertheless, the
sult is surprising from the physical point of view since t
empty intervals in our artificial initial states are uncorrelate
whereas such correlations may exist in DP scaling state
seems that these correlations are rather weak@13#, so that
states with uncorrelated intervals can be used as an app
mation of DP scaling states. This offers an interesting pr
tical application in DP simulations: Instead of starting a cr
cal DP process from random initial conditions a
simulating over long transients, one could use the artific
states of Sec. II withs5sDP as an approximation, followed
by a short equilibration period to reach the ‘‘true’’ scalin
state of DP.

VI. CONCLUSIONS

In the present work we numerically studied the tempo
evolution of a (111)-dimensional critical DP process star
ing from artificially generated correlated initial states. The
states approximate a simple fractal set in which uncorrela
e
s

-

t
c-
t

t

-

,
It

xi-
c-

l

l

e
d

empty intervals are distributed byP(l );l 2a. It can be
shown that such particle distributions are characterized
long-range correlations of the form̂sisi 1r&;r s21, where
s5a21.

The construction of such correlated states is a technic
difficult task, since lattice spacing and finite size effec
strongly influence the quality of the numerical results, es
cially close toa'1 anda'2. In order to minimize these
errors, we proposed to project an almost perfect fractal
onto the lattice. Using these states as initial conditions,
determined the densityr(t) in a critical DP process by MC
simulations. This varies algebraically with an exponentk
that depends continuously ons. Therefore correlated initia
conditions affect theentire temporal evolution of a critical
DP process. The numerical estimates fork~s! are in good
agreement with theoretical results from a field-theoreti
RG calculation~see Fig. 4!. Discrepancies for small value
of s can be further reduced by increasing the numerical
fort.

The RG calculation is valid for arbitrary spatial dime
sionsd,4, and predicts a critical thresholdsc5b/n' where
k~s! starts to varylinearly between1h and 2b/n i . Thus
our result in Eq.~6! qualitatively reproduces the scenar
predicted by Bray, Humayun, and Newman in the contex
coarsening processes@6#. An exact prediction of the critica
thresholdsc is possible because of the irrelevance ofD2 for
arbitrary initial conditions, which can be proven by using t
formal equivalence of the loop expansions ing andD2 . It is
this property that also allows one to express the critical
tial slip exponenth by an exact scaling relationh5(n'

22b)/n i . It should be emphasized that some DP mod
with more complicated dynamical rules violate this scali
relation as, for example, the two-species spreading mo
discussed in Ref.@7#. In such models the mentioned equiv
lence of loop expansions in Fig. 5 is no longer valid. Con
quently, the corresponding slip exponenth takes a different
value, so that Eq.~6! has to be modified appropriately.
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