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Correlated initial conditions in directed percolation
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We investigate the influence of correlated initial conditions on the temporal evolution of a
(d+1)-dimensional critical directed percolation process. Generating initial states with correkisns)
~r® 9 we observe that the density of active sites in Monte Carlo simulations evolvp§tast®. The
exponentx depends continuously o, and varies in the range B/v,<«<». Our numerical results are
confirmed by an exact field-theoretical renormalization group calculdi®t063-651X98)09107-1

PACS numbsgs): 05.70.Ln, 64.60.Ak, 64.60.Ht

I. INTRODUCTION these clusters survive for only a short time, the number of
particles n(t) averaged over many independent runs
It is well known that initial conditions influence the tem- creasesas

poral evolution of nonequilibrium systems. The systems’

“memory” for the initial state usually depends on the dy- (n(t))~t*7, 2

namical rules. For example, stochastic processes with a finite

temporal correlation length relax to their stationary state invhere»= (v, —2p)/v,. These two cases seem to represent

an exponentially short time. An interesting situation emergegxtremal situations where the average particle number either

when a system undergoes a nonequilibrium phase transitidhCreases or increases.
where the temporal correlation length diverges. This raises A crossoveibetween these two extremal cases takes place

the question of whether it is possible to construct initialln @ critical DP process that starts from a random initial
states that affect thentire temporal evolution of such sys- condition at very Iowldensny. Here the parﬂc[es are initially
tems. separated by empty intervals of a certain typical size; there-
To address this question, we consider the example of gifore, the average particle number first increases according to
rected percolatioiDP), which is the canonical universality E9: (2)- Later, when the growing clusters begin to interact
class for nonequilibrium phase transitions from an active/Vith €ach other, the system crosses over to the algebraic
phase into an absorbing stdtE]. DP is used as a model decay of Eq(l)—a phenomenon which is referred to as the
describing the spreading of some nonconserved agent, angitical initial slip” of nonequilibrium systems[S]. _
may be interpreted as a time-dependent stochastic process in !N the present work we investigate whether it is possible
which particles produce offspring and self-annihilate. De-{0 interpolatecontinuouslybetween the two extremal cases.
pending on the rates for offspring production and self-As will be shown, one can in fact generate certain initial
annihilation, such models display a continuous phase transgtat'es in a way that the particle density on the infinite lattice
tion from a fluctuating active phase into an absorbing stat&2res as
without particles from where the system cannot escape.
Close to the phase transition, the emerging critical behavior

is _charactenzed by a parucle_ distribution with fractal Prop- ith a continuously adjustable exponenin the range
erties and long-range correlations. The DP phase transition Is

p(t)~t5, ()

extremely robust with respect to the microscopic details of —Blv=<k<+7. )
the dynamical rule$2,3], and takes place even i+l di- !
mensions. To this end we construct artificial initial configurations with

Monte Carlo(MC) simulations of critical models with ~ 5igebraic long-range correlations of the form
absorbing states usually employ two different types of initial
conditions. On the one hamédndom initial conditiongPois- C(r)=(siSi4,)~r 4=, (5)
son distributionsare used to study the relaxation of an initial
state with a finite particle density toward the absorbing statewhere( ) denotes the average over many independent real-

In this case, the particle densipyt) decrease®n the infi- izations,d the spatial dimension, ang/=0 and 1 inactive
nite lattice asymptotically agfor the definition of the DP  and active sites. The exponanis a free parameter, and can
scaling exponentg, v, ,v,,z, see Ref[1]) be varied continuously between 0 and 1. The limit of long-
range correlationgr—d corresponds to a constant particle

p(t)~t=B, (1)  density, and thus we expect E(.) to hold. On the other

hand, the short-range limir— O represents an initial state
On the other hand, in so-called dynamic MC simulatipfls ~ where active sites are separated by infinitely large intervals,
each run starts with aingle particleas a localized active so that the particle density should increase according to Eg.
seed from which a cluster originates. Although many of(2). In between, we expegi(t) to vary algebraically accord-
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ing to Eq.(3), with an exponenk depending continuously (a) -+t #—t HiH-—+ x
on ¢. Our aim is to investigate the functional dependence of -
(o). (b) 1{1(0]|1|0]0|1}0

The effect of power-law-correlated initial conditions --
(#(0)p(r))~r @79 in the case of a quench to the ordered
phase of systems with a nonconserved order parameter was FIG. 1. Schematic illustration of the projection frof@ an al-
investigated some time ago in R¢B]. Such systems are most perfect fractal set ont®) the lattice sites,,...,Sg.
characterized by coarsening domains that grow with time as
tY2. An important example is the (21)-dimensional affect the accuracy of the numerical simulations. Therefore,
Glauber-Ising model quenched to zero temperature. It wasne has carefully to verify the correlation exponent and frac-
observed that long-range correlations are relevant ondy if tal dimension of the generated distribution. In this section,
exceeds a critical value.. Furthermore, it was shown that we describe in detail how such particle distributions can be
the relevant regime is characterized by a continuously changenerated and tested. For simplicity we restrict ourselves to
ing exponent in the autocorrelation functior(t) initial states in one spatial dimension.
=[p(r,t)p(r,0)]~t @94 whereas the usual short-range  Let us consider a particle distribution on the real line
scaling exponents could be recovered below the thresholdvhere particles are separated by empty intervals of lerigth
The results were found to be in agreement with the simulaWe assume that these intervals are uncorrelated and power
tion results for the two-dimensional Ising model quenchedaw distributed according to
from T=T.to T=0.

The DP process—the prototype for models with a phase P(/)~/"7 1<as2. (7)
transition from an active phase into an absorbing state—is
different from the coarsening processes. Instead of growing'his distribution corresponds to a simple fractal set with the
domains, the DP process generates fractal clusters of actifeactal dimensiond;=«a—1; hence the range of is re-
sites with a coherence length which grows ag'?, where  stricted by X a<2. On a lattice, however, the lattice spac-
z=v,/v, . Thus the scaling forms assumed in Réf.are no  ing and the system size have to be taken into account as
longer valid in the present case. In addition, the field-lower and upper cutoffs for the distributid?(/"). The qual-
theoretical description of DP involves nontrivial loop correc-ity of a lattice approximation depends on the actual imple-
tions, and thus we are interested in finding out to what extenentation of these cutoffs. It turns out that the accuracy of
the results are different from those in RE8]. Our investi- MC simulations depends strongly on the quality of the initial
gation also sheds some light on the relation between thatates, and therefore the proper implementation of the cutoffs
observed phenomena for correlated initial states, the criticdp crucial in the present problem.
initial slip, and scaling laws in time-dependent simulations. ~ We find that a good approximation is obtained when an

In the present work we focus on the following aspects of(almos) perfect fractal set is projected onto the lattice in a
the problem: In Sec. Il, we describe in detail how correlatedvay that sitei becomes active if at least one element of the
initial states can be constructed in one dimension. Usindractal belongs to the interval,i+1]. The resulting lattice
these states we then perform MC simulations in order teonfiguration is the minimal set of boxes on the lattice that is
estimate numerically the exponestas a function ofr (see  needed to cover the fractal set. This projection can be effi-
Sec. lll and Fig. 4 In Sec. IV, we present a field-theoretical ciently realized on a computer by generating a sequence of
renormalization group calculation which generalizes recenpoints x on the real line separated by intervals distributed
results obtained in Ref7]. Because of a special property of according to Eq(7) with a very small cutoffA ;,<1, and
the vertex diagrams and the loop diagrams for the initialprojecting it onto the lattice by the following prescription
particle distribution, it is possible to derive an exact scaling(see Fig. 1

relation, leading to our main result (1) Start with the empty latticg;=0 (i=1,...L), and let
X be a real variable with the initial value=1.
n for o<og (2) Leti be the maximal integer for which=x, and turn
k(o) = (6)  sitei into the active state by settirg=1.
S(d=o=Blv)) for  o>o, (3) Let A ma=L—x be the current upper cutoff and gen-

erate a random number<Qy<1 from a flat distribution. If

with the critical thresholdr,=B/v, . Because of the scaling Y<(Amax/Amin)' ¢, the construction of the initial state is
relation 7= (v, —28)/v,, this function is continuous ar  (nished; otherwise, continue. o

— .. The theoretical result is found to be in agreement with (4) Generate anothelr_zandomlggmlzeﬁrqm a flat distri-
our simulation results in one spatial dimension. In Sec. V, weution in the intervalA ., <z<Agn;", and incremenk by
compare the correlations of our constructed initial states wit{ =2"*_ ), and continue at ste(®). .

the “natural” correlations that are generated by the DP pro-  Notice that stet3) takes the upper cutoff into account by

cess itself. Finally we summarize our conclusions in Sec. VIfinishing the loop when the generated intervalwould ex-
ceed the remaining size of the chain-x. The lower cutoff

is processed in ste@) by truncating the allowed range of
In order to verify the quality of this approximation, we
The construction of artificial correlated particle distribu- numerically estimate the fractal dimensidp of the gener-
tions on a lattice is a highly nontrivial task, since the latticeated initial states by box counting. To this end we divide the
spacing and finite size effects lead to deviations that stronglywhole system intm boxes, and count the numbmrof boxes

Il. CONSTRUCTION OF CORRELATED INITIAL STATES
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FIG. 2. Numerical verification of the fractal dimensidpand the correlation exponeaton a lattice with 2! sites averaged over 20 000
samples(a) Number of active boxem vs the total number of boxes for various values otx. (b) Estimate of the corresponding fractal
dimensiond; . (c) and(d) Analogous estimation of the correlation exponerds a function ofa.

that contain at least one active site, averaging over manglifferent realizations, namely,p;=0.8092, p,=0, the
independent realizations. In Fig(&, m is plotted againsh Wolfram-18 transitionp,=p,=0.705 485; site percolation;

on a double-logarithmic scale. The straight lines indicate thaand p;=0.644 700 andp,=0.873 762, bond percolation.
the “true” fractal is well approximated. From the slopes, we The results turned out to be the same in all cases within
estimate the fractal dimensiah which is shown in Fig. @) numerical accuracy, although the bond and site percolation
as a function ofa. We also measure the two-point correla- showed a better scaling law behavior. An efficient, multispin
tions in the generated states which should be precisely thosmded program has been employed that simulates 32 replicas
of Eq. (5) with o=a— 1. This can be proven by assuming for different valuesa € (1,2), exploiting the advantage that
that the intervals are uncorrelated, and evaluating a geomethe same random numbers can be used on each replica at a
ric series of the Laplace transform &f(/). In order to  given site. This allows us to update 32 systems in parallel,
verify this relation, we estimated(«) numerically in Figs. stored as an integer vector of lendth The lattice size has
2(c) and Zd). been varied betweeh=128 and 10 000, while the number

In both measurements, we find a fairly good agreemenbf independent samples was varying between 10 000 and
with the exact resultédashed lines in Fig.)21t turns out the 500, respectively. Finite size effects turned out to be negli-
deviations close tax=1 can be reduced by increasing the gible for L=4096. As shown in Fig. 3, the quality of the
system size, while the deviations closexte 2 are due to the power law forp(t) is quite convincing, and extends over the
lattice spacing and the lower cutoff,;,. first three decades in the case of a system Witt8192 sites.

It should be emphasized that these artificial initial states-or finite systems, all these curves will eventually cross over
have a vanishing particle density in the liniit-«. On a  to thet /"I decay after a very long time. The slopes of the
finite lattice, however, a finite density is generated whichlines in the log-log plot—measuring the exponet{iv)—
depends orw, and may vary over several decades. By in-have been extrapolated from the last two decades by standard
creasing the lattice size, we therefore reduce the initial parinear regression analysis. For eaglwe also determine the
ticle density which leads to a higher statistical error in thecorresponding correlation exponenfa), as explained in
subsequent DP process. Thus the optimal system size has$ec. Il (see Fig. 2 In Fig. 4, we plotx(a) versuso(a).
be determined by balancing discretization errors of the initialUsing the numerically known estimates for the DP exponents
states against statistical errors of the DP process. [9],

Ill. NUMERICAL RESULTS p=0.2765, »=1.7338, v =1.0968,

The time-dependent simulations have been performed by z=1.5807, ©=0.3137, (8
using a Domany-Kinzel stochastic cellular automaf@h
with parallel updates and periodic boundary conditions. Theour results are in a fairly good agreement with the theoretical
Domany-Kinzel model is controlled by two parametgrs  prediction of Eq.(6) (solid line). The deviations for smakbr
and p,, and has a whole phase transition line where a DPoriginate from the lattice cutoff, and could be reduced by
transition takes place. We performed simulations for thredurther increasing the computational effort.
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N the initial particle distribution. Following the notation of Ref.
= [7], the respective parts are given by

—— Sl o, ¢1= f dx dt(x,0)[ d+N(a— V) ]h(x,1),
— (11)

o — ///// . o o
////7//; Sd 9] = f dx dtgy(x.t) P D[P~ h(x.b)],
— =

7////// (12

- . Spd ¥, ¢1= f d‘*x;1 AP (x,0) (). (13)

10 100 1000

The partSy;+ S, is just the usual action of Reggeon field
FIG. 3. Temporal dependence pffor different initial correla-  theory [11,2]. The additional contributior§,y couples the

tions characterized by=1,...,2 in steps o (from bottom to top.  field y(x,0) with the initial particle distribution(x). It is
The simulation has been performed on a periodic lattice With \yritten in its most general form containing contributions of
=8192 sites, and a lower cutoff,,;,=0.0001, averaging statisti- TR .

all orders iny with independent coefficients; . The lowest
cally over 1600 samples. R — " I

order contributiom ;¢ in Eq. (13) corresponds to the term

IV. RENORMALIZATION GROUP CALCULATION A;¢(x) (1) in the Langevin equatiof®). The higher order
) ] . ) terms forj=2 are included because they may be generated
~ In this section we derive E@6) by an exact renormaliza- ynder RG transformations. However, as we will see below, it
tion group (RG) calculation. To this end the DP Langevin js actually sufficient to consider the first two contributions.

equation[2] has to be extended by an additional term The relaxation of a DP process with random initial con-
ditions ¢(x) = pg to its stationary state was studied recently
— _ 2 2
dip(X,1)=ap(X,1) =bp“(X,1) +DV=p(X,1) + n(x,1) in Ref. [7] using Wilson’s dynamic renormalization group
+AL(x) (1), (99  approach. At the critical dimensia, =4 the constant con-

tribution Almﬁ was shown to be relevant while the “Pois-

where ¢(x) represents the initial particle distribution and sonjan” contributionA ,?¢ turned out to be marginal. For
7(x,t) is a p-dependent noise field with correlations: d<d., however, fluctuations corrections cause the coeffi-
cient A, to vanish under RG transformations. This allowed
(X)X 1) =yp(x,1) S(x=x")8(t=t"). (10 the authors to express the so-called critical initial slip expo-
. - . nent» (0’ in their notation by an exact scaling relation. As
Although in principle we could directly analyze the Lange- nantioned in Sec. I, this exponent describes the initial short-
vin equation, it is often more convenient to derive the corre; o panhavior ofp(t) until the correlations generated by the
sponding effective field theory by introducing a second-ynamical process are longer than the typical size of empty
quantized bosonic ~ operator representati¢h0l. The jjiarais in the initial statf5] so that the system crosses over
L_angevm equation it then transformed into an effective aCig the usual decay of EdL). In the present case, however,
tion S=Sy+ Syt Spa, WhereSy, Sy, and Spq denote the g jnterval sizes of the initial state are power law distrib-
free part, the nonlinear interaction, and the contribution foruted, and affect not only the initial but in principle the whole
temporal evolution. Nevertheless we can use the formalism
of Ref.[7] in order to determine the exponents a function
of o. The only difference is that we introduce a figl{x)
that carries a nontrivial scaling dimensidp .
Let us first consider a scaling transformation

L v T T T T T

§ x—Xx'=bx, t—t'=b%, (14)
wherez=v, /vy, is the anisotropy exponent of DP. Under
this transformation the fields in Eq&§l1)—(13) change ac-
cording to

d(x)— ' (x')=b"Ys¢(x),
YD) — ' (X1 =b " duy(x,1), (15)

FIG. 4. Estimates for the exponeni§s) obtained from the P =P (Xt =b"dug(x,t).

slopes of the lines in Fig. 3. The theoretical prediction is shown by . _ _
the solid line. The dashed line indicates the “natural” correlationsAs in Reggeon field theory, the fielgsandy carry the same
of DP (see Sec. VL scaling dimensiord ,=d;,. The scaling dimension of the
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initial stated,, is related to thdractal dimensiond; as fol-
lows. The number of active sitd$ on a lattice withL sites
grows asN~L%. On the other hand\~(¢)LY, where(¢)
denotes the average density of active sites, i(eh)
~L%~9, Under rescaling this relation turns int@)b %
=(Lb)%~ 9 hence

dg=d—di=d—o. (16)

Under rescaling, the contributid,q changes by

Sipa— Sia= f ddel bd=idu=dep Yl p(x),  (17)
c

i.e., the coefficients\; transform according to

Aj—A]=b I dsp (18
Defining the anomalous scaling dimensiong, 7, of the
fields ¢,¢ by

19

d,=3(d+mn,), dz=3(d+ny)

the scaling dimensions of the coefficienis in the mean
field (MF) approximation is given by
dy = 2 [d(1—])=j 7= 7,]. (20

This result is expected to hold at the critical dimensn
=4. Notice that the relevance of the contributioAs de-
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FIG. 5. One-loop diagrams for the nonlinear verteeft) and
the Poissonian contributiof, (right). The diagrams are formally
equivalent. The same applies to higher loop diagrams that are linear
in A, and the corresponding vertex diagrafmot shown herge
Hence the loop corrections of these quantities are identical to all
orders ine.

we may replace the diagrams of the fofa[ — 292K, /\2+
0(e?)] in Eq. (22) by the scaling parh [ z—d/2—37,/2] of
Eq. (23), resulting in

592K,
)\2

dA -
2 2( Ny 77¢>_Z

dl 2

+(A2)2[— +O(e)}

(24)

The linear part of this equation is now exact to all orders in
e. Since

My~ Mo

5 -z=d,—d,—2z=d,—z<0

(25

we arrive at the conclusion th&, scales to zero for arbi-

creases with increasing In systems with less than four trary initial states ind<4 spatial dimensions. Thus E@1)
spatial dimensions, fluctuation corrections have to be takefeduces to its scaling part, and hence the scaling dimension

into account. Assuming that contributions wite3 in Eq.

of A, is given by

(13) are irrelevant, these corrections have been computed in

Ref. [7] in a one-loop approximation. It was shown that in
d=4- e dimensions the coefficients; andA, change un-

der infinitesimal scalindp=1+1 according to

%: Ny~ 77¢+A gK4A? N 29°K,
dl ) 2N(A%+o) T2 )2
+O(€2), (21
dAz _d_27]¢/_ 7],!, 292K4 592K4
W‘Az 2 -4 N2 _(Az)z N2
+0(€?), (22)

Nyt n
dy =— 420

(26)

Depending on the sign GjAl’ the loop corrections for the

initial particle distribution areelevantfor o> o, irrelevant
for o<o, andmarginalfor c=o0.

Continuously changing exponents usually appear when
we modify a model with a marginal parameter which is in-
variant under RG transformations. For example, in the case
of models with infinitely many absorbing states, the initial
density plays that rol€12]. In our case the two-point corre-
lation of the fieldy(x,t) is characterized byl,=d— o for
r>r.(t), and is left invariant under the coarse-graining RG

whereK, denotes the surface area of the unit sphere in foufransformation, whereg(t) — is a growing spatial scale. In

dimensions divided by (2)*%, andA is the ultraviolet cutoff

in momentum space.
Let us first consider the renormalization Af. As al-
ready noticed in Ref.7], the diagrams in Eq22) which are

the infinite time limit, this scaling crosses over to

dyt—e)=0=plv,. (27)

linear in A, are formally identical with those for the renor- N the regimeo> o the exponentk is related to the scaling

malization of the nonlinear verteg to all orders ine (see

dimensionoIAl as follows. The particle density is expected to

Fig. 5. This observation plays a crucial role in the presentvary in the long time limit as

problem: Since the renormalization of the vertgexs given
by

dg d 37, 20°K,

2 ____v_ 2
di gz 5 5 ~Z + +0(€%) (23

p(t)=pot", (28)

wherepoxA; is the initial particle density. Under rescaling
(15), the densityp(t) [which is essentially the average of
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#(x,1)] scales aﬁo_(t)—>b7d“’l)(t) while the initial density ~empty intervals are distributed by(/)~/"*. It can be
transforms according tpo—b~%p,. Thus scaling invari- shown that such particle distributions are characterized by

ance of Eq.(28) requires that-d,=zx—d, i.e., long-range correlations of the forgs;s;,,)~r? 1, where
o=a—1.
= d¢>_d¢/: 16— My (29) The construction of such correlated states is a technically
z 2z difficult task, since lattice spacing and finite size effects

) ) o ) strongly influence the quality of the numerical results, espe-
In the irrelevant regimer<o ., however, the initial density cially close toa~1 anda~2. In order to minimize these

po scales to zero under RG transformations, which may b@rors, we proposed to project an almost perfect fractal set
mter_preted as an initial state Wlth nonmteractln.g _act|ve seedémo the lattice. Using these states as initial conditions, we
leading to an increase according to £2). Combining these  jetermined the density(t) in a critical DP process by MC
results we arrive at E(q6), which is exact to all orders ie. simulations. This varies algebraically with an exponent
that depends continuously an Therefore correlated initial
V. “NATURAL” CORRELATIONS IN A DP PROCESS conditions affect theentire temporal evolution of a critical
¢ DP process. The numerical estimates kgv) are in good
agreement with theoretical results from a field-theoretical
RG calculation(see Fig. 4. Discrepancies for small values
of o can be further reduced by increasing the numerical ef-
fort.
C(r)=(siSis)~r P, r<g,, (30) The RG calculation is valid for arbitrary spatial dimen-
sionsd<4, and predicts a critical threshode,= B/v, where
i.e., the “natural” correlations of the critical DP are given by «(o) starts to varylinearly between+ 5 and — 8/v,. Thus
oPP=d—pBlv, . Interestingly, the corresponding exponentour result in Eq.(6) qualitatively reproduces the scenario
«(aPP) vanishes. This means that these correlations charagredicted by Bray, Humayun, and Newman in the context of
terize a situation where the critical DP process is almostoarsening processgg]. An exact prediction of the critical
stationary. From the field-theoretical point of view this is notthresholdo is possible because of the irrelevanceigffor
surprising, sincex is determined solely by the scaling dimen- arbitrary initial conditions, which can be proven by using the
sion of the initial particle distribution. Nevertheless, the re-formal equivalence of the loop expansiongjimndA,. It is
sult is surprising from the physical point of view since the this property that also allows one to express the critical ini-
empty intervals in our artificial initial states are uncorrelated tial slip exponentn by an exact scaling relatiom= (v,
whereas such correlations may exist in DP scaling states. £ 23)/v,. It should be emphasized that some DP models
seems that these correlations are rather wdah so that  with more complicated dynamical rules violate this scaling
states with uncorrelated intervals can be used as an approxelation as, for example, the two-species spreading model
mation of DP scaling states. This offers an interesting pracdiscussed in Ref.7]. In such models the mentioned equiva-
tical application in DP simulations: Instead of starting a criti- lence of loop expansions in Fig. 5 is no longer valid. Conse-
cal DP process from random initial conditions and quently, the corresponding slip exponeptakes a different
simulating over long transients, one could use the artificialalue, so that Eq(6) has to be modified appropriately.
states of Sec. Il withr= ¢ as an approximation, followed
by a short equilibration period to reach the “true” scaling
state of DP. ACKNOWLEDGMENTS
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